X
  GO
Ihre Mediensuche
Suche
Zweigstelle
Medienart


1 von 584
Deep Learning mit R und Keras
das Praxis-Handbuch : von Entwicklern von Keras und RStudio
Verfasserangabe: François Chollet mit J.J. Allaire ; Übersetzung aus dem Amerikanischen von Knut Lorenzen
Jahr: 2018
Verlag: Frechen, mitp Verlags GmbH & Co. KG
Mediengruppe: Buch
nicht verfügbarnicht verfügbar
Exemplare
 ZweigstelleStandorteStatusFristVorbestellungen
 Vorbestellen Zweigstelle: 07., Urban-Loritz-Pl. 2a Standorte: NT.EIA Chol / College 6c - Informatik & Computer Status: Entliehen Frist: 29.09.2021 Vorbestellungen: 0
Inhalt
Einführung in die grundlegenden Konzepte von Machine Learning und Deep Learning
Zahlreiche praktische Anwendungsbeispiele zum Lösen konkreter Aufgabenstellungen: Maschinelles Sehen, Sprachverarbeitung, Bildklassifizierung, Vorhersage von Zeitreihen, Stimmungsanalyse
CNNs, Rekurrente neuronale Netze, generative Modelle wie Variational Autoencoder und Generative-Adversarial-Netze
Dieses Buch ist eine praxisorientierte Einführung und erläutert die grundlegenden Konzepte sowie den konkreten Einsatz von Deep Learning. Der Autor verzichtet dabei weitgehend auf mathematische Formeln und legt stattdessen den Fokus auf das Vermitteln der praktischen Anwendung von Machine Learning und Deep Learning.
Anhand zahlreicher Beispiele erfahren Sie alles, was Sie benötigen, um Deep Learning zum Lösen konkreter Aufgabenstellungen einzusetzen. Dafür verwendet der Autor die Programmiersprache R und die Deep-Learning-Bibliothek Keras, die das beliebteste und am besten geeignete Tool für den Einstieg in Deep Learning ist.
Das Buch besteht aus zwei Teilen: Teil I ist eine allgemeine Einführung in das Deep Learning und erläutert die grundlegenden Zusammenhänge und Begriffe sowie alle erforderlichen Konzepte, die für den Einstieg in Deep Learning und Neuronale Netze wichtig sind. In Teil II erläutert der Autor ausführlich die praktischen Anwendungen des Deep Learnings beim maschinellen Sehen (Computer Vision) und bei der Verarbeitung natürlicher Sprache. Viele der hier vorgestellten Beispiele können Ihnen später als Vorlage zum Lösen von Problemen dienen, die Ihnen in der Praxis des Deep Learnings begegnen werden.
Das Buch wendet sich an Leser, die bereits Programmiererfahrung mit R haben und die ins Machine Learning und Deep Learning einsteigen möchten. Für den Einsatz von Keras werden grundlegende R-Kenntnisse vorausgesetzt. Verlagstext
Details
VerfasserInnenangabe: François Chollet mit J.J. Allaire ; Übersetzung aus dem Amerikanischen von Knut Lorenzen
Jahr: 2018
Verlag: Frechen, mitp Verlags GmbH & Co. KG
Systematik: NT.EIA
ISBN: 978-3-95845-893-2
2. ISBN: 3-95845-893-9
Beschreibung: 1. Auflage, 442 Seiten : Illustrationen, Diagramme
Sprache: Deutsch
Mediengruppe: Buch